@

DOCUMENT RESUME
ED 078 647 EM C11 177

AUTHOR Blount, Sumner E,
TITLE A Generative CAI Monitor For Teaching
Machine-Language Programming.
INSTITUTION Connecticut Univ., Storrs. Dept. 0f Electrical
* Engineering.
SPONS AGENCY Connecticut Research Commission, Hartford.; Na.lonal
Center for Educational Research and Development
(DHEW/0OE) , Washington, D.C.
PUB DATE May 72
GRANT OEG-0-72-0895
NOTE 132p.

EDRS PRICE - -MF-$0.65 HC-$6.58
DESCRIPTORS *Computer Assisted Instruction; *Computers; Feedback;
- Individualized Instruction; Problem Solving; Program
Descriptions; *Programing; *Programing lLanguages
IDENTIFIERS IBM 360; *Machine Language Teaching; MALT, SEDCOM;
Simulated Educational Computer

ABSTRACT

An effective generative computer-assisted
instructional system designed to teach basic machine language
computer programing is now available.. The system=--known as Machine
Language Teacher (MALT)--is implemented on an IBM 360 with numerous
2741 remote terminals giving student access. It teaches the machipe

language of. the Simulated Educational Computer (SEDCOM), a
hypothetical 377 (octal) wdrd computer. . SEDCOM is a small but
powerful enough to provide an excellent introduction to machine
language programing. The system, which is truly generative in that it
creates and solves problems tailored to individual student heeds,
consists of four major components: a problem generator, a control
unit, concept routines, and a SEDCOM simulator. Operationally, it
proceeds by first acquiring student records and determining the
amount of instruction needed. It then generates a sample programing
problem and helps the student design a solution by dealing with
sub-tasks. Concept routine guide the student through each sub-task
and feedback continuously monitors progress. . (PB)

Q
I

«

ER]

PAFullToxt Provided by ERIC

ED 078647

;_.cvsu’|’//

The University of Connecticut

SCHOOL OF ENGINEERING .
Storrs, Connecticut 06268

Computer Science Progr;m
in the

Department of Electrical Engineering
) & .

é FILMED FROM BEST AVAILABLE COPY ?

ED 078647

US OEPARTMENT OF HEALTH,
EDUCATION 8 WELFARE
NATIONAL INSTITUTE OF
EDUCATION
Lt THIS OOCUMENT HAS BEEN REPRO
OUCEO EXACTLY AS RECEIVEO FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATEO DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

A GENFRATIVE CAI MONITOR FOR TEACHING
MACHINE~LANGUAGE PROGRAMMING
by’

Sumner E. Blount

i

This research has been supported by the Connecticut Research
Commission Grant RSA 71-7 and the U. S. Office of Education Grant #OEG

C-72-0895. The author also received support for this graduate education
through a National Defense Education Act Fellowship.

May 1972

/i

1
i

Chapter

I

I1I1

VI
ViI

VIII

TABLE OF CONTENTS

ImRoDUcTIoN............l.......l..l..l....l.l..l...

I

SYSTEM OPERATION...:..7....................:.........
PROBLEM AND LOGIC GENERATION.on.ssssesnnnnennns
CONTROL UNIT. s e venunnnnnenssssnnnnnnnnneesssnnnnnns
CONCEPT ROUTINES. .. vuusuenranansenensnensnnensnenns
PROGRAM VERIFICATION AND SIMULATION.c.....
STUDENT RECORDS ¢4 s s svssennseasnnnnnnsesnnnnesennnss

EXPANSION, EVALUATION, AND CONCLUSIONS.:ccovveoneen.

Page
1

11
24
43
56
69
83
92

APPENDICES a.a.aa..ca.acaaaa.a..ac.;¢.¢.¢.¢¢.¢¢.¢¢0000098

BIBLIwRAPI{YQGGGGO...O...Ol.l........................ 127

iv

Figure

N B > WN e

10
11

s

j

{
i
t
1
:

LIST OF FIGURES

BLOCK DIAGRAM OF SYSTEM ORGANIZATION..:.ecccccescccccocosasnses
PRINT-OUT WHILE IN THE INSTRUCTOR MODE....ccccovevvocccccose
EXAMPLE OF PROBLEM:..ccccccsorascrcccccscccacocccocosnnncose
FLOW CHART OF CONTROL UNIT...cccceeccecccococccccacsossnanes
FLOW CHART OF A TYPICAL CONCEPT ROUTINE.....ccovocecronsosse
EXAMPLE OF SYSTEM INTERACTION...ccoveesccsosccossososccncose
DIAGRAH OF RESPONSE ANALYSIS IN TEACHING PHASE....cccceceess
FLOW CHART OF PROGRAM VERIFIER...cccovocecocccocccccscsocccocs
OPERATION OF PROGRAM VERIFIER...cccceeveconcccosccscoccscoanse
STUDENT FILE SNAMES...ccc0cccccccocssosesososscccscacscacass

STUDENT FILE PROBS.............ll........l..........l.......

Page

16
20
42
44
57
64
71
76
77
85
87

‘Table

W NN S WO

LIST OF TABLES

mcs ARRAY........................l....:.............
FIRST PROBLm PRIHITIVES.-...-....‘....-...-..--.-..-..

SECOND PROBLm P.RmITIVEs....-.................o...---

mIRD PROBLm PRmITIvEs.....................o..l.....

PROBLEM PRIMITIVES AND THRESHOLD PAIRS.........0..s...
SAMPLE PROBLEMS....0vtuecuseseecennennonsoossoonsossens
CONCEPT ROUTINES, GENERATION THRESHOLD, AND

INTERACTION BANGES. « e vvuusunecnnnnnoenoscsoosnnonnoss

LIST OF CONCEPT RATIOS,...................

Page
21
26
27
29
32
35
49

60
89

I. INTRODUCTION

This paper describes a computer-assisted instructional (CAI) system
designgd to teach and give practice in basic machine-language computer
programaing. The system has been implemented on‘an I8M 360 using the
Conversational Programming System CPS). - Numerous 2741 remote terminals
are available to the student so that access to the system can be
achievéd quite easily. For the sake of clarity, the system will here-
after be referred to as MALT - a MAchine Lang;age Teacher.

The machine-langugge which is taught is that of SEDCIM, a
Simulated EDucational QOHputer as described in Booth [1). SEDCOM is
a hypothetical 377 (octal) word couéuter with single-addressing and
one accumulator. It is quite similar in design to the Digital Equipment
Corporation PDP-8 computer. ';il instructions in SEDCOM are identical
to their counterparts in the PDP-8 instruction set with thé exception
of the I/0 commands. ' X

SEDCOM was used in this research because it provides the student
with an excellent introduction to machine-language programming. Many
computer science courses assume a knowledge of programming on a small
machine a;d SEDCOM provides just such a background. It is also
powerful enough to be used for non-trivial projects, yet small enouvgh

in memory size to be applicable to a CAI tutorial environment.

Review of CAI Research

Most efforts in CAI during the past few years have been devoted

»

to creating systems which are more general in their applications and
1 .

H

2

more powerful in their problem-solving abilities. This trend has quite
naturally led to the development of generative CAI systems. Such systems
have many fmportant differences from their predecessor, frame-oriented
CAI. Frame-oriented CAI was inherently inefficient because all questions
and possible student responses had to be specifically determined and
programmed by the course author. As the student progressed through a
series of questions, the éystem would follow a tutorial path which was
pre-set by the author. Each response Qould cause a program branch and
another question would be asked. There was very little ability to
vary the material presented according to the needs of the student. There
was also much inflexibility Qec;use additions or revisions in the system
would pften require massive amounts of re-programming. ffameéoriented
sysfems basicclly allowed the computer to function only as a glorified
filing cabinet in that it presented material to the student in a pre-
determined, non-adaptive way.

Generative CAI systems, on the other hand, have allowed the
material presentation to be'more nearly geared to the student's abilities.
Each user receives ; variefy of questions which closély reflects his
current achievement level. As his performance improves,the system
exercises less control and allows the student to perform more as an
autonorous unit. Sikléssy [2] provides an éxcellent discussion of
the major differences between generative and fréme-oéiented CAI.

Generative systems also allow a much greater flexibility because
questions and problems are determined by the system instead of the
‘course author. Modifications to the system become much less of an
ordeal than for the frame-oriented system. The range of hossible

sample. problems given to the student can be expanded quite easily by

e

merely adjusting certain parameters in the generation heuristics. However,
changes in the general type of proﬁlems genz2rated are very difficult for
eithgr type of system. Each system is usually designed as a vehicle
for teaching a specific subject or type oflgfpblem, so0 changes
charécteristically involve major system ;eorganization.

Koffman [3] describes the iﬁplementatio; of a generative CAI
system designed to teach an entire course in 1ntroduc£ory computer
science. Each student récetves instruction in a series of basic concepts
sucﬁ as yiﬂiéy arithmetic, design of séquential circuits, minimization
of digita} networks, or the like. The system is c;;;;antly analyzing
the student's performance to help se}ect a suitable sequence of concepts

‘ for him. It can also functior solely as a problem solver for use by

graduate or advanced under-graduate students.

Research in Teaching Programming

Recent research in teaching computer programming has focused only
on higher-level languages [4,5]. This is because these languages provide
an excellent introduction to the basic concepts of computer programming.
They posseés certain characteristics, however, which 1limit their .
effeétiveness in a CAI environment. Because of -their complexity, it
is impossible for the instructional system to determine the relative
correctness of a student program. The program may be actually executed .
or simulated but if the results are incorrect, the cause and location
of the program error cannot be established. The system may be able to
provide much instruction in basic programming concepés such as

the use of variables, loops, subrouﬁines, etc., but its éffectiveness

ceases when the student finishes designing his program. Since the

systgm has not monitored the development of that program in any way,
it 18 powerless to make judgements as to the program's effectiveness
and location of any errors which might exist. The undesirable net
result is that the student is expected to judge the merits of his own
program,

Although this simulation procedure might be partially acceptable
for higher-level languages, it is unsuitable for machine-language
1nstruction. This is because programs written in machine-language
are more susceptible to minute errors in logic than are other types
of programs. Extreme care must be taken because, for example, a
successful program execution does not by any means guarantee that a
second trial will produce identical results. The initial state of
the machine may have a profound ef “ect on the final outcome whereas
this is not usually the case in dealing with user-oriented languages.
Consequéhtly, it is better to monitor and verify the student's solution
program as it is being designed. .

Machine-language was chosen fog this research also because it
provides a more structured environment. A particular algorithm may
be implemented many different ways in higher-level languages while in
machine-language, fewer such possible solutions exist. This fact

allows the system to monitor a’user program and isolate errors as they
occur.

Feurzeig and Wexelblat [4], have developed a system called
SIMON as a vehicle for teaching simple programming for use in the
fields of mathematics, physics and engineering. After being supplied

with a sample problem, the student attempts to design a solution

program. -SIMON then tests this program against a "true" program

|
)
i
-
|
!

supplied by the author. If the results differ, the system is unable
to help correct the error aside from determining if any program
variables are inappropriate to the>é;mpu;;£ion. Although this may

in some cases be the cause of the error, it is likely that more program

analysis is necessary to correct the situation. iﬁlso, each problem

used by SIMON is specifically written and the solution programmed by

the course author. The system can neither generate nor solve its

own problems.

Fenichel and Weizenbaum, [5], have also done extensive research
into computerized programming instruction. Their system, called
TEACH, 1is quite complex and is capable of teaching an entire course
in programming concepts. The course presently consists of eighteen
chapters, each one introducing the student to new programming principles.

Although the system appears to be quite effective and succeséful,

" Fenichel freely points out that it attempts only syntactic program

correcgions_and leaves the semantic analysis and correction of logical
errors to the student.

Norton and Slimick [6] describe a system which is most similar in
design to MALT. The two primary differences are that their system
uses a simple assembly language instead of machine-~language and it
makes no attempt at analyzing student program errors. Their complete
system is composed of three major components: a "driver" which serves
as a student-curriculum interface, a simulated machine very similar
to SEDCOM, and an interpretive assembler. As the student types in
each assembly language statement it is code& in absolute form and
checked for syntactic correctness. Upon completion, th? program is

{
"run" and the system determines the results which should have been

obtained. The student is responsible for determining not only the
existence but also the location of any program errors.

The systems of both Norton and Fenichel have several similar
properties. Both brovide the student with extensive instruction in
many different areas of programming. Though Norton focuses heavily
on a specific language, .each system primarily strives to teach
programring c?ncepts of a genefal nature. This is very difficult
in the MALT system due mostly to the simplicity of the SEDCOM

language. It was decided that the most effective means of teaching

-the language was to actually guide the student through the use of 1it.

Program Generation and Verification

Consgiderable effort has also been devoted in recent years to
the dual problems of automatic program generation and proof of program
correctness. Hannérand Waldinger [7] have developed a successful
algorithm for program generation. First, various program parameters
are established such as an input vector x, input predicate ¢ (%),
partial function z - £(x), and output predicate ¥(x,z)., ¢(x) and y(x,2z)

are conditions which must be met if the input and output vectors are to

_ be considered appropriate to the process. The function z = f(X) is

precisely the operation which the program is intended to perform. -
By deriving and proving theorems based on thgse quantities and
their relationship to the output predicate, a pr gram can be constructed
which 1mp1qments the.function £(x). These results are quite interesting
because they represent an amalgamation of much work done in related
éreas such as mathematical analysis, theorem préying and set theory
applied to the relatively new field of program g;:eration. The concepts

represented by Manna's work were found to be valid and useful in the

7

implementation of the MALT system. This will be explored more fully

in Chapter 6.

Overview of MALT System

The purpose of MALT is to teach the various techniques which are
used in programming. Inherent in this task, however, : . yiity
of the system to determine when an error has been made in the student's
brogram. MALT attempts, through constant monitorihg of the student's
program, to detérmine not only the existence of logical errors, but
also their location in the program. This ability enaﬁles‘the system
Fo be much 1ike the human teacher; that is, it can note and correct
logical errors before they develop into undesirable programming habits.

MALT is a generative CAI system in two important senses. First,
it creates its own sample pfogramming problems using a variety of
heuristic techniques which will be diséussed later. It is not dependent
upon the course author for a complete supply of ready-made problens.
Instead, by beginning with only a series of basic problem elements or >
sentences, it generates a problem which is consistent with the user's
present ability. Also, each problem contains several variable program
parameters which are generated randomly by the system. The result is
thaf the number of possible different problems a student may receive is
virtually limitless.

Another important way in which the system is truly generative is its
ability to design a sclution program for the problem which it hasg
generated. By using basic algorithms supplied by the course instructor,
the gystem can produce the actual machine code of a solution program.

This implies that the system is quite flexible since later alterations’

and extensions involve only the addition of new programming algorithms,

not massive system reorganization.

The system attempts to tailor its presentation to fit the abilities
of the #iv"ent. Any problem which is generated is designed to provide
the stuceat with a challenge while not being beyond his capabilities.
The dialogue initiated by the system will also be governed by the
user's performance. A beginning student will receive a wide variety
of hints and suggestions for the design of his program. Also, his
errors will result in quite explicit ;nd complete remedial messages.

-As the student progresses through the materjal he will receive less
system information and be given more freedom in his programming actions.
When the student achieves high proficiency, the system can function
purely as a problem-solver in that all programs are generated by it;
This facility is useful if a student desires to study examples of
advanced problems and their corresponding solution progréms.

As the system questions the student, it is constantly developing
its own solution program for comparisoﬁ with the student's program,

It is also continually updatingiits knowledge of the status of the
user's program. In this way a given programming concept is rarely
prese;ted the same way more than once to a particular student. The

student's enjoyment of the system is thereby greatly enhanced because .

he receives new dialogue with every problem.

Summary of System Operation

The actual operation of MALT is straightforward. After the student
identifies himself to the system ﬁis records are obtained and evalu-
ated. These records determine the amount of instructional guidance
which the student will receive. Next, a sample programming problem

suited to his abilities 18 generated. To help him design his program,

the system will then develop a logic chart, or list of "sub-tasks".
These. sub-tasks break the problem into a series of smaller, more
manageable steps and are of great help to the novice programmer,

As each sub-task 1s reached in the programming process, a
corresponding Concept Routine i:dentered which will guide thg student
through the construction of that part of‘his program. During this phase
the student 1is constantly being given feedback as to the correctness

-of his program. If his program introduces logical errors, the system
will point‘these out and offer helpful suggestions for their correction.
If the system feels that the student might benefit from ;bserving his
program in operation,‘it also has Fhe capability to simulate program
execution. | .

The system is constantly evaluating the student's performance
and updating his permanent file. w'.;1:;1:13 is necessary becéuse his
_échievement determines not only the difficultyiof the problenms giveh
him, but also the amount of interaction which he receives during the
dégign of his program.

This research effort has been intended primarily to overcome the
weaknesses in previous systems as described above. However, it is
hoped that the MALT system wi;i be complimentary, not contradictory,
to earlier efforts. In some respects, the structure of the present
system 18 much more'tehtricted than others. However, the techniques
and heuristic methods used in the system have wide applicability and
represent a significant basis for possible further research.

Although the entire MALT system is quite large and complex, it

can be considered as a series of interconnected modules. Each such

module will be discussed in the following chapters. An overall view

10

of the system organization is given in Chapter 2. Chapters 3 through 5
examine—each major component of the syétem in detail. These include
th; Problem «nd Logic Gererator, Control Unit apd the array of Concept
Routines. Chapter 6 discusses the pfogram verification and simulation
abilities of the system. The student records and their evaluation

are considered in Chapter 7. The final chapter considers the

significance and possible expansion of the MALT system.

II. SYSTEM OPERATION
The operation of the MALT éystem has been designed to be as
flexible as possible, Although certain obvious restrictions must
always be placed ;pon the user when teaching programming in a tutorial
enviromment, the student nonetheless has been afforded maximum free&om
in the operation of the system. This enables the system to satisfy
the requirements of any user regardless of whether he is a beginner

desiring in-depth instruction or an experienced programmer wishing

only a moderate review.

.Level of Competence

The principal parameter which determines the amount of system’
interaction which the student receives is his LEVEL, This is a basic
system variable and is the only parameter which is utilized by every
system component. It determines to a large extent not only how:much
instructional dialogue is initiated by the system, but also how much
freedom the user is allowed in the designing of his solution program.
It also determinesrthe difficulty of the problem which a student
receives,

The value of LEVEL is always in a range from 0 to 2.5. Upon a
student's first use of the system, his LEVEL is set to a value of
.3. This allows the student a certain margin-;f freedom because it
is very possible that he might make several mistakes as be begins to

acquire facility with the system.

As the student increases his use of the system, his performance

11

12

LEVEL will certainly tend to rise. This is practically assured because
the‘problems which are given to a beginning student are quite low in
difficulty. If a student's LEVEL is consistantly in the 0-.5 range

for a long period of time, then either he is completely unsuited for
even beginning programming instruction or he is deliberately exhibitingA
sub~standard performance. In either case his use of the system will
give him negligible benefical results.

During system operation the student will gain experience in many
Qifferent éypes of machine~language programs. As his programming
ability increases, so his LEVEL will also rise. This gradual increase
in the LEVEL is determined by his answers to system-generated questions
and by how well hLis solution program performs the functions assigned
to it. The system‘will tend tb initiate more dialogue with a begin~
ning student than with one who has gained some facility in programning.

The system will also p}ace a few more restrictions on the begin~
ner in terms of the amount of freedom he is allowed in writing his
program. The philosophiéal basis for this design is that although’
programming is definitely a "learn by doing" process, there are certain
concepts and techniques in basic programming which should be taught.
Once the student has been instri-ted in techniques which are generally
considered to be "good" programming habits, it is hoped that he will
continue to use them in later programming efforts. However, as he
progresses through the instructional sequence he becomes, in general,
free to use his own techniques. .

The rate of progression through the programming material is not
fixed. It is obvious that while two students may be subjected to

equal numbers of system questions, the difficulty of these questions

13

may vary drastically. This fact implies that all questions should
not be weighted equally by the system in the calculation of the
student 's current LEVEL. Therefore, less difficult questions are
afforded considerably smaller importance than ones requiring more
programming ability or knowledge.

This variation of question weights is carried still further. Even
though a certain question may not affect a student's LEVEL to a large
degree, the magnitude of the LEVEL change depends on the correctness
of the response, ‘As an illustration, a student who responds correctly
to a question should have his LEVEL increased a relatively small amount.
However, an incorrect response to‘the same question tends to indicate
that the system is operating above the student's programming ability,
In this case; his LEVEi should be decreased a significant amount to
place him more in line with his ability,

When the student reaches a LEVEL of 2.5, it 1is assumed that he
has gained maximum facility in machine-language programming. Therefore,
the system will ﬁenceforth function only as‘a problem-solver in that
it will completely generate all programs for the user. This facility
is very useful to students who would like to observe examples of more
difficult problems and the structure of their solution programs.
Students at this LEVEL should be able to derive a great deal from this
type of self-study. If the student still wishes to be quizzed on his
solution, he may press the console ATTENTION (ATTN) button and request
that his LEVEL be lowered as will be explained later.

All the techniques described are designed to progress the
student through the material at a maximum stable rate which is con-

sistent with his abilities. Since erratic fluctuations in the LEVEL

14

are virtually impossible, it appears that this goal has been achieved.
Anothef method used by the system to tailor its presentation
to the aBility of the user is to selectively alter the value of a
student's performance indicator, (PEKF), depending on the difficulty
. of the problem. This value represents the student's performance on
each of the ﬁhree segmentsJof each sample problem. 1t is added to
his current LEVEL only after the programming of each such primitive.
As the st;dent érograms each segment of his problém, his performance
is evaluated.v This PERF value is then divided by a stability factor-
to ensure that erratic changes in a student's LEVEL do not occur.
The stability factor is considerably smaller if the student's LEVEL
is less ;han 1.5 then if it is greater than this value. The end
7resu1t of this pr&cess is that a typical studeﬁt will progresé quickly
through the simpler problems and tend to move more slowly through the
‘more difficult ones. This feature also insures that the student will
prog. 2s8s .through the probleqs in an orderly fashion. The material
is adjusted according to the student's perf&rmanée but the;e is no
erratic change in presentation because a given question might or might
not have been correctly answered. ‘
The technique of gradual advancement also lends itself nicely
to system alterations. If class results indicate that progress
through the material is not at the proper pace, a change of only one
statement in the Control Unit can remedy the situation. By selectively
altering the value of the stability factor which is divided into
PERF, the proper pace can be achieved without having to change all

Concept Routines. This facility has been used quite frequently and

it is felt that a reasonable presentation speed -has now been achieved.

- —

15

During the programming of any problem it is inevitable that
certain tasks are required of the student which seem quite easy to
him. If the student 1s‘requ1red té perform these tasks completeiy with
full system interaction, considerable boredom and restlessness will
result. Therefore, if the system feels that a particular task, or
conéept, is too easy for the student, it will write the progran segment

which performs the'given task. 1In this way, valuable time is not

wasted on trivial or meaningless éxercises.

K]

System Components

There are four major components in the MALT system, each of which
will b; discussed fullyAin later chapters. Figure 1 provides a block
diagram of the general system organization.

The first component is called The Problem Generator and is
respongible for constructing a problem and a list of "sub—;asks"
repr;senting the logic 6écegsary to solve the problem. The Problem
Generator consists of five system programs: one to generate the
problem and its parameters (gener), oﬁe to store the text for the
printing of the problem (prob), and three to generate the proéram
logic (chart 1, chart 2, chart 3).

The second component to be considered is the Control Unit. It is
responsible for the orderly coordination of all -system activities. It
determines and maintains records of all parameters which will be
needed in the user's program. From the Control Unit, each Concept

Routine 13 called to help the student design that segment of his

=

program,

Every fundamental concept or sub-task of machine-language

4

16

Figure 1

Block Diagram of System Organization

Student

Records

Control Unit

U

Concept
Routing
#1

VA

Conéept

‘Routine

¥2

EAW

[

Program
Verifier

SEDCOM

Simulator

Program and
Logic Generator

Concept

_Routine
#35

17

programming is represented by one of the Concept Routines, Each
routine 1is compesed of three phases: ; generation, a teaching, and
a remedial phase./ The generation phase has the ability to actually
write a program to solve the appropriate sub-task. The teaching phase
is concerned only with helping the user construct his own program,
The final phase is a collection offremedial Statements and information
to help correct user errors; |

Thela‘st major system component is the SEDCOM simulator, This
package is used whenever partial execution of the user's program
is desirable. Associated with the simulator is a Program Verifier
which enables the system to make detailed analyees as to the correct-
ness of thz p;ogrem and nature of any existing errors. The simulator

is used only in isolated instances but nevertheless provides the user

with substantial insight into the programming process,

Modes of Operation

'To enable MALT to satisfy the diverse desires of many users,
several modes offoperation have been develbped. There are two modes
reserved for student use and one mode for use by the instructor. Thei
primary mode is called the Student Mode and is used whenever the
student is enrolled in the appropriate computer science coerse. In.
this mode, the student receives all facilities of the system and his
performanee is monitored and stored in his permanent record. He is
afforded no eboice concerning which syetem functions he may receive.

He is provided with a sample problem, a logic diagram consisting of a

-sequential 1isting of the. problem sub~tasks, and tutorial aid in the

designing of a solution program, If his performance has been exceptional,

however, the system will function as-a problem-solver as described above.

'

+
1

'
1
i
%
‘
H

18

If the student is not currently enrolled in the course, the system ,
operates in the Non-Student Mode. This moée differs primarily in that A
the student is not required to follow the usual instructional sequence
of the system. For instance, he may receive a problem of any diffi-~
culty level, an approériate logic chart, a solution program, or any
combination thereof. He may also receive tutorial instruction exactly
as if he were in tge Student-Mode.

A second difference in the two student modes is that the student's
performance is’'not permanently stored if the system is in the Non-
Student Mode. Althougﬁ/hié performance is monitored throughout, it
is not saved for later reference beca;se a permanent file has not been
established for him. However, his performance on general programming
concepts is included with that of the regular students. In this
manner, the overall réébrd,of student achievement in machine~language
programmingrié ;ade,more statistically representative,

If at any time during system operation a user wishes drastic
cbanges in, or termination of, the pfesentation of the material he
may press thé Attention (ATTN) button on the 2741 ieyboard. This
action causes a routine to be entered which determines the user's
wishes. If he indicates that he wants to terminate system operatiqn
completely, a flag.is set and control is returned to the Control Unit.
His records are then updated apd operation halts. If however, he
indicates that he would like to progress either at a faster or slower
rate, his LEVEL is adjusted accordingly. The change remains permanent
regafdless of his performance -at the new level. This enables each
student to progress at a rate which he feels is appropriate, not

~

one dictated by the instructor or even the MALT system itself., Also,

19

his performance is readily available to the instructor in the form of
a percentage score, so he cannot influence his grade for the course
by selectively al;ering his own LEVEL,

The final mode of operation is the instructor Mode, It is estered
by supplying a keyword to the system which can be changed periodically
by the 1nstructor: In this mode, the instructor has several options
available. He may receive a class 1ist, a record of the cumulative
achievement of each student, a complete history of every student's
performance, or an evaluation of class achievemept on each of several
broad programming concepts. This flexibility énables the instructor
to observe not only general areas of class wéakness but also specific ﬂ
difficulties of any individual,

Finally, the instructor m;y reset ;ny or all ;tudent fileé if they
begin to £i11 up. The system requires a special password for this
operation so that unauthorized access to student records is virtually
impossible., Figure 2 illustrates the use of the Instructqr'Moqe.

‘The system tailors its operation to the needs of the user through
the use of a numerical array called FLAGS. These values are set to
indicate many various conditions, priﬁarily r;flecting the current
mode of system operation. The array greatly facilitates the task of
system alteration because such changes involve merely adjusting the
initial value of a particular 'array element. Also, the number of
possible conditions which can be sensed by the system g;;;tly enhances

" its overall flexibility. Table 1 indicates the current values and

significance of each element of the FLAGS array.

Constraints of CPS

There are certain constraints placed upon the operation of MALT

20
O ORI 220NN -

¥
18
86
£8
SL
68
L8
Si
06
26
08
68

03s

400
L10
100
£10
S20
710
0T0
920
£00
%70
810
800

Syouu3

1€00
1600
8200
8400
<010
S:T0
0800
L0TO
0<00
0810
0600
SL00

S3shods3ay

h5689°9 =°A30 °NVLS

%160
921
%1¢0
102
981
SSt
€01
el
L0
Ammﬁ
XA
L80

Wil

*Z 34n314

410
L0
t41]
40
L0
80
Lo
S0
0
00
L0

L0
s3sn 40 ¢

STY0IIT INIANLS 40 IN0-INT8d

NSNS N
W eASANNeHArTNH NN

-l

=3Av SSYVTW

HonNLIvae
NOUT3iisg
ONViNd
HI3YSIMY
33714004
LEDE I
A37010980
310Y¥i40sd
Isviy3d
WHI3dd SH
ASYVIHIOLP
1134S

JUVN

SIK™

wwomcowz JONVHY04YId SSVID IHL 33S OL 3INIT NOA ¢INoM

ou

¢L1S1T SSVIO V LNVH AOA 0G
*300W YOLINYLSNI 3JHL NI MON 3¥V NOA

IC

JAruiToxt Provided by ERIC

Q

E

21
Table 1.

VALUE OF FLAGS ARRAY

SUBSCRIPT VALUE HEANI NG ;
1 1 STUDENT 'YANTS ONLY PROBLEM ?
2 STUDENT WANTS PROBLEM, SUB-TASKS |
3 STUDENT UANTS ALL FACILITIES, NSH ?
4 STUDENT VANTS ALL FACILITIES, RSH é
?
2 1 INSTRUCTOP WANTS CLASS LIST g
2 INSTRUCTOR WANTS CONCEPT RATI0S g
3 INSTRUCTOR WANTS STUDENT FILES §
I RESET ALL STUDENT FiLES
5 'RESET ONLY "PROBS" FILE
3 "0 REGULAR STUDENT MODE
1 NON~-STUDENT MODE
2 INSTRUCTOR MODE
4 - ¥

BLANK FOR FUTURE EXPANSION

BLANK FOR FUTURE EXPANSION

|
|
|
f

22 /

by the very nature of the CPS system which deserve explahation. The
CPS system operates in an interpretive mode and is executed in low-
speed core on the IBM 360/65. This results in considerable delays

in program execution speed and system response time. As the number

of people using CPS at any given time increases, so also do the delays
in operation increase. At certain times these delays become virtually
intolerable especially for someone who is not familiar with CPS
operation. However, normally response times are about 3 seconds

which appe;rs to be quite acceptable.

Another restriction placed upon the system by CPS is that of
storage space. The maximum size for any given CPS program is four
pages, where each page represents four-thousand bytes of core storage,

Also, each user is allowed a maximum of twelve active pages in CPS R
core at any given time. Since the control unit occupies four pages,
there‘can never be more than-eight additionail pagesiactive. This -
limitation has been reached many times and corrective measures must

be taken whenever it occurs. It appears that system implementation
could have been considerably simplified if this restriction'did not
exist., }

A final problem inherent in the structure of CPS is the possibility
of computer system féilure. A partial solution is the fact that the
system updates most of a student's records after each problem solution.
Nevertheless, much time and effort are usually wasted in the event of
a system failure,

Despite these limitations the CPS system performs well in an
interactive CAI environment, The process of interactive dialogue
vith a terminal usually proves quite fasinating and enjoyable to the

beginning student. It is hoped that possible future system improvemente

1
A,
o

i
%
1
!
|
i
4
3
¥
§
:
I
{
]

23

in CPS may remove some of the above restrictions. Such improvements
night include the use of high-s;eed instead of low-speed core storage,
or the allocation of more CPU time to the CPS system.

In all later discussions of the structuré of SEDCOM, it should
be emphasized that while SEDCOM itself is obviously a binary (or
octal) machine, the CPS system operates only in the decimal mode.

This fact necessitates that all SEDCOM variables be stored internally
as character strings rather than numerical quantities. Although this
situation poses no great programming problems, it has a profound effect
on the length and operating time of any system program. For example,
the trivial act of incrementing a four-digit octal number requires
considerable time and character s;ring manipulation to accomplisa.

If this important limitation did not exist, a greater amount of time
could have been spent on expanding ;he overall scope of the MALT
system.

Now that the basic operation of the system is apparent, it is
necessary to discuss each of the system components in turn. The

first to be considered is the Problem and Logic Generation.

III. PROgLEM AND LOGIC GENERATION

The primary area in which the generative capabilities of MALT
are most evident is in the construction of sample problems. As explained
in the introduction, most previous systems resort to storing entire
problems which have been supplied by the course instructor. This
technique is wasteful of disk storage and contradictory to the princi-
ples of generativehgé;L o

MALT employs a much more sophisticated as well as interesting
heuristic for generatihg its problems. InsteadAof storing‘a pfoblem
in its entirety, cnly parts of it are kept. These segments are called
"problem primitives' because they are like basic building blocks which
the sysfem uses to designrits problems. They can be thought of as
representing either a first, second, ;r third sentence of a typical
machine-language programming problem.

Each group of problem primitives is designed around a different
programming concept. The first such grdup, herein called "first
problem primitives', typically is concerned with methods of data input -
into a user program. This involves only the use of SEDCOM's reader
but th; type of input data may vary greatly. A student may be required
to construct a program to do such tasks as reading in a series of
characters and storing them in memory, or reading a series of multi-
digit numbers and forming their numerical value.

The next group, second probiem primitives, deals exclusively
with the proceésing of data which is resident in the computer memory.

This group obviously encompasses a vast number of possible problems and

24

25

is therefore the largest group of primitives. The beginning student

will be required to perform trivial processiné such as adding or sub-
tracting the contents of two memory registers. More difficult processing
includes program decisions based upon the contents of the accumulator

or link, operations involving large arrays of memory registers, and

the like. Finally, the advanced students will be required to p;rform
quite complex algorithms such as extracting a particular symbol or
numerical quantity from a table which has been stored in memory.

?he tﬁird group of problem primitives deal exclusively with various
‘methods of computer data output. Beca;se of the simplified structure
of SEDCOM, this may involve only the operation of a teletype printer.
However, like data input, it may take any one of many possible forms.
The studentrmgy be asked to print out such things as his own name, a
particular messagé, a }egister address, or the contents of a register.
These operations nogmally involve quite advanced techniques and provide
the student with excéllent’pract:lce in many areas of machine-language
programming.

There are presently eight elements of the first problem primitives,
fourteen members of the second group, and ten elements of.the third.
Tables 2'through 4 provide a list of current problem primitives. Each
underlined quantity represents a parameter (to be discussed below),
which is generated randomly for each problem. To construct a typical
problem for the student, the system selects an element from each group
according to certain constraints and combines them to form a unified,

meaningful problem.

To allow for less difficult problems, each group has one element

called a null problem primitive. These can be generated whenever a

26
Table 2.

EIRST PROBLEM PRIMITIVES

Read In a series of ASCI! characters ending In a "*" and store
them starting In location 100.

Read In a serles of ASCII characters which end with a "x"
and keep a counter of the number of "§"s which occur.

Assume a table has been set up startlng at location 100
consisting of a 3-character symbol followed by a number;
So each entry takes up 4 registers and there will be
07 of these entries.

Read In a series of L-digit numbers and store thelr value
starting at location 250. The input will end when the
first character of a number Is a "X".

Read In 24 (octal), 2-digit numbers and store thelr value
starting at location 311.

Read In 31 ASCI| characters and store them In locations

220 thru 25]1.

Null primitive

Null primitive

)

7 T

27
Table 3.

ECOND PR M4 _PR

Search registers 220 thru 250 for the 1lst instruction which
begins with the octal digits "70". (EXAMPLE: 70XX)

Search registers 125 thru 160 for the largest number.

Search registers 200 thru 230 -and stop at the 1lst register
“which contains a.positive number.
“—«-\'

Search registers 160 thru 220 for the octal number "7402".
Form the absolute value of register 140 In the Accﬁmulator.

Add the contents of register 150 to the contents of register
1120.

Subtract the contents -“ reglster 160 from the contents of
register 210.

Multlply the contents of register 211 by the contents of
register 112

Form the 2's complement of the contents of reglster 304
in the Accumulator.

10) Form the sum of registers 170 thru 220 in the Accumulator.

11) Compare the contents of registers 120 and 210. Place the
smallest In location 255 and the largest In location 250.

28
Table 3. (Cont.)

12) Null primitive

13) Search the table for the symbol "JMP" and retrieve the
corresponding number. If It Is not In the table, then
halt the program,

14) Null primitive

10)

29
Table 4,

THIRD PROBLEM PRIMITIVES

Print out the reglster number, 3 spaces, and the message,

"POSITIVE".
Next, deposit this number In location 305.

If this results in a non-zero LINK, stop with the (ACC)=7777,
otherwise stop with the (ACC)=0000.

Finally, print out the 4-digit contents of the Accumulator.

Lastly, print out the reglster where It was found, 2 spaces,
and the contents of that register.

Print out the symbol, S5 spaces, and the register number where
it was found.

For registers 220 thru 250, print out the register number,
4 spaces, and the octal contents of that reglister.

Null primitive

Print out the message, "HELLQ".

Print out your own name.

Y 4

- 30

simpler problem dealing with only one concept is desired. A beginner
can then receive an‘easier problem consisting of, for example, only

a processiﬁg primitive. Null primitives also effectively increase the
number of possible problems which can be generated because each problem
does not have to consist of three complete primitives. By the selective
inclusion of null primitives, the student feels that he is receiving

a much wider variety of problems although this is not strictly the

case.

Problem Generation Techniques

There are three primary ways in which the system adapts its problem
generation techniques to the user. Although these generation constraints
serve primarily to limit the number of possible problems for a given
student, the end result is a meaningful problem which is consistent’
with the user's ability.

The most important const;aint heuristic is that of problem plausi-
bilitj. Each problem must be reasonable in that it requires the student
to perform relevant tasks. :To generate a problem which involved con-
tradictory or totally unrela“ed operations would clearly be undesirable.
Therefore, all problems are generated so that each of the constituent
primitives are logically related and the result is a plausible, meaningful
problem.

The implementation of this h;uristic implies that not all combinations
of primitives are possible. Each primitive can be comb;ned only with
a subset of the following primitive group. Such a subset typically

includes only those primitives which would form a valid problem when

combined with the primitive previously selected. For some primitives

31

this subset is quite small while for others, notably the null primitives,
it is as large as the entire next group. Within these plausibility
boundsf however, primitive generation is totally random.

A second constraint on generation is the obvious factor of a
student's past performance. It is important that the user receive a
problem which is maximally consistent with his current programming
ability. For this reason, each problem primitive is assigned a pair
of values, (a,B), called a threshold pair. The user's current LEVEL
must fall ﬁetween these values +f this primitive is to be used. If
his LEVEL is outside this interval the primitive would be either
trivially simple or hopelessly difficult and therefore counter-productive
to his learning process.

, These threshold pairs are set by the instructor and reflect his
judgement as to the difficulty of the particular problem. They are
easily changed, however, té adapt to differing class abilities. Most
of the simpler problems have a threshold pair of approximately (0,1)
while the more difficult ones have a pair of (1.5, »). This is only
an estimate though, because Qery few primitives have equal threshold
pairs (see Table 5), As the student progresses through the material,
the advanced primitives become more likely to be generated and the
easier problems are excluded from possible generation. Each problem
is therefore appropriate to the student's c;rrent LEVEL yet varied
enough in difficulty to provide interesting combinations.

A final restriction placed upon generation is intended to avoid
,'repetitious problems. After an entire problem is constructed, the stu~

dents's past history is consulted to determine if this problem is the

same as one previously solved. If so, the problem is rejected and

32

w
Q
L
L)
-

laXalal oW oW W W N

88888 88

2,0

N IE IR
onocwvwNno oo
oooooooo
et N -HOO O

Wl Wt e W P b P P

NN N O NN

A

PN PN PN PN N NN PN N N P

ownnmnm

[] [] [] []
mmmmmllllmmmm
R I IS S SrS
ON-INOOoOOOWNMOOO
ooooooooooooo
ok o - - - _N_N-N_N NN N

Wt Wl il Nl P NP NP P N P NP NP P

~HANMITNONONO NN
- ol o) 4

lalalealalalalalalale)
~N | o

[] L] L]
8 3888888 33
LRI IE X X
-ToOOoOowmooooo
oooooooooo
HOOmerHNNOOO®

Wl Wl Wl W P N b P b P

123“56789m

n

33

another is generated, Because of’the large number of bossible problems
available, it is important that ones which are not dhly identical but
even similar to previous ones be rejected. Therefore, if the second
primitives an& either the first or third ones are identical to the
respective primitives of a previous problem, the problem is judged as
being repetitious and:discarded. The second primitives are regarded'
by the system as being most important due to their large number and

the fact that they form the basis of most programming problems.

If, after several attempts, the system d&es not generate a new
problem for the user, it accepts the current one and informs the user
that it may be similar to a previoué one. This saves possible wasted
time in problem generation and eliminates the threat of infinite
loops. -

All of the preceeding techniques are designed to provide the stu-
dent with a wide variety of meaningful problems. In the current system
implementation, there are approximately eighty completely different
problem formats which are possible. There is therefore small chance
of complete problem duplication.

Once an appropriate problem has been constructed there are various
parameters within it thch must be included. These 1n91ude such valueé
as the address of a memory register, the address of a table, the amount
of input data, a string of output text, etc. There are many of these
parameters and their value will vary with each successive problem
generatioﬁ. The resulting situation is that although there are roughly

eighty basic problem formats, the number of completely different

problems which are possible approaches infinity. Clearly this illustrates

the power and effectiveness of the problem generation heuristics,

34

Problem parameter generation is subject to only one minor restriction.
The parameters are constrained to fall within certain reasonable inter-
vals of core memory. This insures that parameters will not interfere
with each other or the user's program sequence. If this restriction

did not exist, user programs which were self-modifying might often

result.

¢

When problem and parameter generation is completed the problem
is presented to the student. This often requires small amounts of
sentence méﬁification and generation in order to get a syntactically

correct form. It usually involves only proper agreement between the

sentence verb and modifying preposition so that forms such as: "Sub-
- -

.

tract x by y" do not result. These modifications are not extensive

" but they do illustrate the limits to which $entence generation can

be taken. The next logical step in generftive CAI research could

be to construct problems not from sentence primitives as done herein,
but from simple word primitives. The theoretical value of such an
effort would be much greater but so also would be the difficulties
inyolved. Table 6 provides several examples of typical problems which
miéht be generated by MALT.

The various heuristics used by the system in problem and parameter
generation are extremely important. They are flexible enough to
provide a wide variety of sample pfbblems and specific enough to tailor
each problem to the present abilities of the student. The technique
of building problems from basic primitive elements eases the program-

.ming task of the instructor and allows him to concentrate on other

areas of system design. It also makes the overall system generative

’ in the broadest sense of the word.

35
Table 6.

M 0 S

Read In a series of ASCI! characters ending in a "X" and
keep a counter of the number of "A"s which occur.

Form the sum of reglisters 242 -1ru 262 in the Accumulator.
If this results In a non-zero LINK, stop with the (ACC)=7777,
otherwise stop with the (ACC)=0000.

Read In 10(octal) ASCI! characters atid store them In
registers 260 thru 270.

For registers 260 thru 270, print out the register number,
1 space, and the contents of that reglster.

-

Read in 24(octal), 3-digit numbers and storz thelr value
starting in register 300.

Search reglisters 300 thru 324 and stop at the 1lst register
with-a zero number In it.

Print out the register number, 2 spaces, and the message "ZEROY.

Form the'absdiute value of register 272 in the Accumulator.
Finally, pripnt out the 4-digit contents of the Accumulatcr.

Print out the message "H! THERE".

Search registers 212 thru 230 fBF the largest number.
Next, deposit thils number In register 310.

36

A valuable by-product of problem generation is that the solution
to the programming problem is implicitly provided té the system. fhe
system is informed of the sequence of problem primitives and parameters
selected. This knowledge is used both to construct a logic diagram
of sub-tasks and to monitor (and generate in part) the solution

progra~ This process is explained in the next section.

Concept Sequence

The final task of the Problem Generat ‘on is to construct the
Concept Sequence. This variable (called SEQ) is a character string
consisting of a series of digits which represents the sequence in which
the Concept Routinesmust be calléd in order to design a solution
program. In generél, every pair of digits represents the number of a
different Concept Routine. Each Routine is :ssigned an aribtrary
integer whose value falls in the range (1,35). A sequence of such
numbers is assigned to each possible problem primitive by the course
author which reflects the basic logical flow of an appropriate sol-

ution program. The Concept Sequence for the complete problem is then

-merely the concatenation of the sequence of each respective problem

primitive.

To clarify this point,. assume that a sample problem consists of
primitiv.:s 3, 10, and 5. The Concept Sequences for these primitives
are, respectively:

'2324 '
23240503 '
and '323433 !
This iﬁplies that the solution program for the first primitive can be

designed by successively calling concepts 23 and 24. The program for

i
i
|
!
!

37

the other primitives can be implemented in a similar manner. The
Concept Sequence for the entire problem is therefore found by com-
bining the sequence for each primitive yielding:

'2324...3433 !
The final element in each respective sequence is a null symbol which
is used to indicate to the Control Unit that the end of a program
segment has been reached. The end of the entire pregram is indicated
by two adjacent null symbols in the sequence.

Almost all Concept Routines require only two digits in the
Concept Sequence for their respective number assignment. However,
it is sometimes necessary that additional parameters be passed in
this string. As an example, the Concept Routine which teaches program
branches must have available t; it the destination of any such jump.
Therefore, the two digits following its own code (which happens to beﬂ"\
26) represent the number of the Concept Routine to which the Jump
is to be directe;l. A SEQ value of '2603...' indicates that the
Concept Routine should inéert an instruction in the program to "JMP"
to the beginning of concept number 3.

This technique of constructing a complete Concept Sequence from
similar sequences for each primitive has proven to be quite effective.
It is a highly compact method for representing tye entire logical
flow of a solution program. It also allows a wider variety of problems
to be generated because each primitive is treated as a problem in it-
self. Since there is no logical overlgp between such primitives, there

¢

is a larger number ur combinations which can be made than if this

method were not used.

38

Logic Gemerztion

Another important generative facility in the system is its
ability to extract the program logic from any given sample problem.
This ability provides a structure within which student and system
can operate rffectively. It allows the student to visualize the
basic flow of his program and eliminates much initial confusion and
error. Also, the system requires that certain ground rules be estab-
lished before a user designs his program. If rio such restrictions
were made, the system would, in effect, have to "understand" the
user's program regardless of how he designed it. This is clearly an
interesting but recurgively unsolvable problem. For, if the system
monitor could "understand”, in some meaningful way, any program which
was supplied to it, -it could also interpret one which was a little
more complex than itself.

This reasoning leads one to the obvious conclusion that since
such a situation is unattainable, there must be some limits as to
how the user may develop his program. It was decided that the best
alternative was to show the student a flow chart of hig problem and
allow him to develop the program within the framework of this logic.
Early results seem to indicate that students do not feel restricted
by this method. 1In fact, they usually insist that it helps them
. greatly in leagning machine-language programming because it aids
them in structu&ing their program. |

The Logic Generator is used after a problem has been presented
and prior to the programming of any one of its primitives, It is

also entered from the Control Unit after the programming of each

-

Lt

39

primitive to produce the lo;ic for the following primitive. This
allows each primitive to be totally independent from any other one
and spares the student from long waits while large numbers of sub-
tasks are printed out.

The function of the Logic Generator is fairly straightforward.
It must scan the Concept Sequence and generate a list of logical
sub-tasks for each concept in the string. The problem is more complex
than this however, because many concepts require a variable number of
sub-tasks depending on certain conditions. For instance, the concept
which teaches the student how to input a series of numbers must be
aware of whether there are a fixed or variable amount of these numbers.
The %ist of sub-tasks generated for the latter case will be longer
becaﬁs; various operations must be performed in the student's program
to determine if the end of the input has been reached.

Even those sub-tasks which are similar for each problem will
not be strictly identical. This situation implies that the Logic
Generator is far more than a text buffer and printing routine. It.
must analyze both the param;ters present and the Concept Sequence to
determine the proper list of sub-tasks.

There is also a second complicating factor,iﬁ this process. It
is often necessary that a particular sub-task make reference to
another one somewhere else in the list. For instance, the sentence
"Jump down to sub-task 7" might occur as part of the logic for a
particular primitive. The Logic Generator only knows,however, the
lrelative point in the program to which this jump is directed. It
does not know the exact number of the sub-task corresponding to that

part of the program. It therefore must have a method of determining

40

the exact number of sub-tasks which are required for each element in
the Concept Sequence. This will allow other parts of thé program to
be referenced by their appropriate sub-task number. As a result,
each sub-task is made more specific and the entire list is much more
coherent to the student.

This is accomplished in a manner analagous to a 2-pass assembler.
The Concept Sequence is first scanned and a record is maintained of
the beginning sub-task of every concept. A counter is incremented
by the corgect number of sub-tasks required for each concept. The
result is stored in an array, Begin, as in the following example.

Let the Concept Sequence for a program segmeht be '08101107 °'.
The solution program_can thus be written by calling concepts 8, 10,
11 and 7 in proper order. Now, let us assume that these concepts
require 3, 1, 4, and 2 sub~tasks, respectively, to implement them.
From this information we can determine the number of the particular
sub—-task which repfesents the start of any concept. In this case we

have:
Begin (8) = 1
Begin (10) = 4
Begin (11) = 5
Begin (7) = 9
In subsequent iogic generation, any sub-task may therefore
refer to any other concept in the sequence merely by consulting the
proper element in the Begin array.
The actual generation of the sub-tasks is performed next. The
control program for the Logic Generator initializes a scanner to the

beginning of the sequence string and sets a sub-task counter to one.

Each concept number is then extracted and the proper 1ist of sub-tasks

41

generated for it. Upon return to the control program, the sub-task
counter and scanner have been updated to reflect this operation,

In the previous example, the sub-tasks for concept 8 would be
generated first. The scanner would next be set at the second element
of the sequence, "10", the sub-task counter would be incremented to
4, and processing would continue. The scanner is not advanced in the
control program because each concept is not always represented by
exactly two digits in the Concept Sequence.

When the first null symbol is reached in the string, the
entire primitive has been reduced to a series of sub-tasks and
control is returned to the system Control Unit. Figure 3 provides an
example ;f a fypical sub-task generation. Normally, the student would
design his program for each primitive individually so he would not
receive the sub-tasks for.all primitives at the same time,

The techniques inherent in the system's p?oblem and logic
generation phaées appear to be quite universal in application. They
are, in géneral, not restricted to operationrwithin the framework of
the current system but instead are applicable to other areas of gen-
erative CAI research., The prinéiple of constructing.sample problems
from smaller elements and adapting each problem tc the ability of
the student is basic to the tenets of generative CAI research,

Now that ;he techniques for problem generation are understood,
it is important that the operation of the system Control Unit be

considered. The next chapter provides a discussion of this relatively

small but important component,

;
!
i
;
i
!
B

NV & WN T

42
Flgure 3.

EXAMPLE OF PROGRAM
SUB-TASK G R

YOUR PROBLEM IS TO WRITE A PROGRAM WHICH WILL:

Read In 20 (octal) ASCI! characters and store them In registers
240 thru 260.

Form the absolute value of the contents of register 240 in the
Accumulator.

Finally, print out the 4-digit contents of the Accumulator.

ere are the sub-tasks for the 1lst line
) iInitiallize a ptr to register 240.
) Initlalize a ctr with the value of =20 (octal).
) Read a character.
) Store It away using the ptr.
; Update the ptr.

H
1
2
3
4
5
6 Update the ctr and If iIt's not zero, jump back to start of 1Qop.

Here are the sub-tasks for the 2nd line

1) Bring the number In register 240 to the Accumulator.,

2) Check the sign of the ACC and If It's negative, then form
it's 2's complement.

re are the sub-tasks for the 3rd line

) Store the contents of the ‘Accumulator temporarily.

) Set up a subroutine which will print a character.

) Get the number to be printed and rotate It so the 1st (or
: leftmost) octal digit Is on the right.

) Mask out the left 9 blits, add 260, and call the print

subroutine.

) Do the same for the 2nd digit.

) Do the same for the 3rd digit.

) Get the number, mask It, add 260, and print it.

IV. CONTROL UNIT

The heart of the MALT system is a 4-page Control Unit stored
under the name_ﬁzINZ. This component functions much the‘same as an
operating system and is the only program which is always active in
CPS core. It has access to all relevant information concerning the
student and the current sample problem. It is designed to act as a
system co-ordinator in that it sequences the student through the
proper presentation of course material. A flow chart of the Control
Unit is given in Figure 4.

The Control Unit has been designed to be as universally appli-~
cable as possible. That is, it is totally independent in the sense
that it constantly monitors the status of the user's program regardless
of the type or structure of that program. At any given time, the
control unit is cognizant of all rclevant user program parameters. In
this respect, it functions not merely as aicontrol program, but also
as an "intelligent" programming monitor.

The most important aspect of the Control Unit is the way in which _
it records the various parameters of the user's program. There are
two basic types of parameters: those which are necessary for all
programs (universal parameters), and thosg whose existence depends

only upon the current student program (program-dependent parameters).

Universal Program Parameters

After determining the user's name and securing his perf: rmance

records, the Control Unit requests a sample problem from the problem

43

44
Figure 4

Flow Chart of Control Unit

Retrieve
Student
Records

Generate Generate

Problem Sub-~tasks

Initialize
Program
Parameters

Determine

Next Concept 3

Routine
Any

lljmpsll
to this routine

Enter |

Resolve
Them

Concept
Routine

BN\

Primitive /
?

Update
LEVEL

End
of
Problem

Update
Student
Records

;
!
}
'
;
;
{
)

45

generator. In doing so, it makes available all relevant parameters

which might be useful to the generation algorithm. When control is

-returned, all parameters which the student will need in constructing

his program ~- > initialized. There are several of these which deserve
special consideration.

The entire memory of SEDCOM 15 represented as a 377 element array,
each element being a character string of length 4. This array 1is
originally initialized to "0000" to insure that no previous programs
cause error; in the current program. Since SEDCOM and CPS operate
only in octal and decimal modes,ireSpectively, all memory registers
numbered with non-octal digits (such as registers 028 and 039) afe
ignored by the system.

As the student designs his program th; lccation of the register
which will hold the next sequential instruction is indicated by a
variable called PC (Program Counter). For the sake of s:lmi:l:lc:lty
and to avoid possible overlaps with other storage locatioﬁs, the
program counter is initialized so that all user programs will begin

in register "000". This variable is continually updated to insure

-proper instruction placeﬁent.

During the course of program development the student will
usually require that numerical constants be stored in memoryAf;r
later access by his program. These constants are placed by the
system sequentially beginning in register 377 and extending downwards’

in memory as far as necessary. The current location of the end of

this 1list is indicated by a variable called LIT (for LITeral pointer).

As each new constant is needed, it is placed in memory at the end of

the list and th2 LIT is decremented by one.

i
H
H
i
!

46

The technique of forcing placement of program constants at the
top of memory was chosen for several reasons. The middle areas of
memory (registers 150 through 350) are often reserved for lists an&
tables to be used by the student's program. To allow placement of
the constants within the possible range of these lists would neces-
sitate considerable alteration in memory allocation algorithms. Also,
to allow the user to specify their location would introduce much
needless dialogue, Finally, the arbitrary placement of constants in
a program is buasically irrelevant to the machine-language learning

process., f

Program-Dependent Parameters

fhe primary function performed by the Control Unit is to deter—
mine, at all times, the current status of the student's pfogram. Since
the system must be able to guide the student through‘his program
development, it clearly must have a detailed record of every relevant
program parameter. Some typical parameters which the system would
need are the location of any pointers and counters, location and status
of any program loopé, the statusrof the accumulator, the location of
any registers used for temporary storage, and the location of any
unresolved forward jumps. This infbrmation does not directly affect
the flow of the program but must nonetheless be available to the

system to enable it to successfully monitor the student's program

development.

A. Loop Pointers and Counters

The locations of pointers and counters are reprcsented by the

respective variables, PTR and CTR. These variables will exist whenever

47

there are loops within the student's program. In general, only one
such loop will be active at any given time so that a series of nested
loops rarely occurs.
These variables are placed along with numerical constants at
the top of memory. Anytime a program necessitates the non-concurrent
use of more than one loop, these same PRT and CTR registers are re-
used as a method of instilling proper programming habits in the user.
The existence of a program loop is assumed by the system when-
ever a pointer or counter is initialized. The physical start of the
loop is deemed to be the first memory register after this initial-
1zation process. By monitoring the beginning of a loop in this
manner, the system can easily determine if the student correctly
“Hesi§ns his end-of-loop decision sequence. The most common brogram-
ming mistake of this kind occurs when fhe student attempts to jump

back to the initialization sequence instead of the main body of the

loop.

B. Temporary Stcrage Registers

During the construction of most programs, it is often necessary
that some variables be given temporary storage in memory. The
physical location of these parameters is usually invariant for the
duration of the given program. However, their location is program-
dependent so measures must be taken to recorh their location in any
given progrém.

To implement this storage in MALT, an array of temporary locations
(TEMLOC) was created. Each element of this array represents the storage

locationd a particular variable. This variable is stored temporarily, and

48

its location in memory is recorded in the TEMLOC array. Henceforth,
511 Concept Routines which require access to the variable need only
refer to the proper array element. If any array element is empty,
then the corresponding variable is either not relevant to the current
program or has not been created as yet. Each concept routine can then
revise its presentation to account for this situation. Table 7 is a
list of all temporary parameter 16cations which Qre recorded by the

system.

C. Accumulator Status

In machine-language programming, probably the most common source
of error for ;hc beginner involves the manipulation and cu?rent status
of the acéumulator.‘ SinceASEDCOM possesses neifher a ﬁon—destructive
deposit nor a destructive load instruction, the student énd the system
musf consfantly bé aware of tﬁé preégnt contents Af the accumulator.
For instance, if thé accumulator is to berloaded with a given numbér,
it first must Se cleared of‘any‘previous,contents. Likewise, a number
which is t; be use§ 1mhediate1§ and also saved for future use must be
returned to the accumulator since tﬁe act.of,depoéiting it into memory
de;;roys the accumlator's contents.

The contents of the Accumulator can be represented in two
important ways. These two representations may often differ depending

on the prior actions of the program. As an illustration consider the

following program segment:

ST IR AR it WY WiV Y O FIVA LIV WY LEALIR

3 NUMBER USED AS COMPARISON VALUE
IN SEARCHING OPERATION

] TEMPORARY STORAGE FOR ANY USER

PROGRAM
5 LOCATION OF ANY SUBIJUTINE TO

PRINT A CHARACTER

6 CHARACTCR IN INPUT STRING WHICH
THE USER PROGRAM COUNTS

7 NUMBER 1/HICH 1S TO BE OUTPUT ON
THE PRINTER

63

At the highest interaction range the system performs less like g
a tutor and more like a general programming monitor. ~It does not
demand that the student design his program in any particular manner
besides adhering to the original sub-tasks. It asks very few questions N
and gives only a small number of hints and suggestions. The student
i5 basically left on his-own to see how well he can perform. He is
informed if part cf his program is in error but otherwise, the system
?does not require him to follow a particular program format. A sample
list of con;epts and interaction ranges is provided in the third
column of Table 8.
A concrete example may help to illustrate these interaction ranges.
The Concept Routiﬁe which teache; initialization of counters is divided
into three such degrees of interaction. At the lowest range the
student 1is told_what the value should be which will be used to
initialize the counter. A student in the second range wili be told
which values are possible but nc’. which one he should use. At the

highest plateau the student is provided with no suggestions whatsoever,

(Fiﬂ; 6) -

1
!
i
1
t
]
H

50

Location Instruction Comment
010 TAD 100 /Add registers 100 and
011 TAD 200 /200
012 SZA /1s the result zero?
013 JMP 16 /No
014 TAD 100 /Yes, ADD register 100.
015 DCA 200° /Deposit and Clear
Accumulator
016 ' /What is the accumulator

here?~ at the start
of Concept j.

It is evident that the Accumulator may contain two different
numbers when the program reaches register 16, If the compariaon’::
register 12 produced a zero result, the instructions in pegisters 14
and 15 would be executed. The Accumulator would then contain zero
upon reaching register 16. However, if the comparison yielded a non-
zero result, register 13 would cause a direct jump to the end of the
program segment. In this case the Accumulator would contain a number
which may or may not be important to the program. Clearly, the system
must have two different representations of the Accumulator status.
before the current instruction for register 16 can be determined.

To implement thé;;'ideas, two variables cal;ed ACC and ACCUM are
used. ACC 1s.a single variable which represents the state of the
Accumulator assuming that the program sequence was executed sequentially

with no jumps. ACCUM is a 35-element array representing the Accumula-

tor contents at the start of each Concept Rovtine.

o

If ACC = i the Accumulator would currently be in state i were

the program to follow a sequential path. The variable i can assume

51

one of the following values:
0 - representing an empty Accumulator,
1 ~ denoting valid numerical contents, or
2 ~ indicating a number which has no value to the current program.
Similarly, ACCUM indicates the Accumulator status at any specified
point in the program. If ACCUM(j) = i then the Accumulator will be
in state i when the program enters Concept Routine j.

In the example given above, the Accumulator contents would be
zero at register 16 if the program was executed seq;entially so ACC
would therefore equal 0. However, the contents would be non-zero if
this point in the program was reached by the jump in register 13 so
ACCUM (j) would be set to either 1 or 2 depending upon the significance
of these contents. The sequence of instructions beginning in regiéter
16 would therefore have to reflect both possible states of the
Accumulator in order to avoid simple but important errors in the final-
program results,
This Accumulator information is important to all Concepf
Routines because it determines whether certain progfam actions will
be necessary such as clearingithe Accumulator or retrieving a stored
number for further processing. All Concept Routines expect che
‘Accumulator to Pé in a particular state upon entry to the routine and
if this is not the.case, then instructions mﬁst be inserted in the
program to bring it to this state. Both Accumulator variables are used
to make this aetermination.

At the conclusion of any Concept Routine, the sariables ACC and

ACCUM are adjusted to reflect the program actions which occurred

within the routine. This may involve setting the ACCUM array to

52

reflect conditions at a location which has not been reached y.t, 1In
our example, this would be done when the instruction in register 13
was inserted. The Concept Routine which was active at this time
would note that the Accumulator would not be cleared when register
16 was reached and would therefore set the corresponding element of

the ACCUM array to indicate this.

D... Program Jumps

Although the student designs his solution program sequentialiy,
he must constantly be aware of logical branching within the program.
It is often the case that a forward jump must be made to a yet unknown
destination in the program. Clearly the Contro! Unit must maintain
records of all such unresolved forward jumps. To accompliéh this,
all system components have access to an array variable, JMPLoc; defined
as followsé

1f JMPLOC(j) = k, there exists ag unresolved jump in register k
which should be resolved when concept j 1s entered. The Register k
should then be filled in as a jump to the first register of concept j.
To determine whether concept j has been reached yet, the Control Unit
maintains another array, START, such that 1if

START(j) = m ,
then the segment of the student's program representing concept j began
in memory register m.
To {illustrate, consider the following program:
Assume that the Concept Sequence is '232416...°'

This will give usSe to a program such as the following:

4

[

A et ame

;
1
i
i
i
i
:

33

Memory Number of the Concept which is
Location represented by the program segment

10

|
. Concept #23
20
21 s

‘ Concept #24

27
30

g Concept #16

45
46

From this example we see that concept 23 starts in register 10, concept
24 in register 21, etc. The START array would therefore contain the

following values:

START(23) = 10 -
START(24) = 21
START(16) = 30 ,

Now, 1if thé instruction in register 46 should be a "JMP" to concept 10,
it could not be coded at this time because concept 10 has not yet been
r’ ached in the program. Instead, the 10th clement of the JMPLOC array
would be set to 46 to indicate this condition. Later, when concept 10

was reached, this instruction could easily be inserted into the program.

-
- s
S %o
e .
- Y P CR
< - . IR

54

These two arrays provide the system with the ability to inter-

connect various concepts much the same as a complex assembler or -

loader resulves external global references in a group of programs.
It also is clearly illustrative of the fact that the Control Unit
is keenly'auare of all characteristics and parameters within the
user's program.

The Control Unit guides the student through an orderly presenta-
tion of the material until the Concept Sequence, SEQ, has been reduced
to a null indicator. At this time, the system must re-initialize many
of its parameters and deal with any existing unresolved program jumps.
If the entire program has not been written, the next portion of SEQ is
used to generate a list of sub-tasks and the student continues to design
his program. If, however, two contiguous null iriicators are en-
countered in SEQ, the program is complete. The system will then
generate a complete ilsting of the student's program for his future
reference and begin its evaluation of the student's performance. Most '
of the student's records will be updated to include the current
problem and he will be asked if he desires to continue operation. This
process continues until the user indicates that he wishes to terminate
operation in’which case his performance on the entire series of
proylems is evaluvated and entered into his permanent file.

It should bé evident that while performing numerous clerical

¥

functions, the Control Unit also is responsible for a relatively
complex analysis of the user's program. At any given point in the
development of the program the Control Unit is aware of its exact
nature and structure. As each concept is called and the program is

expanded this knowlzdge must be constantly updated and revised to

55

reflect the immediate parameter conditions. It is for these reasong
that the system Control Unit is a very general and useful CAl
programming monitor.

Now that the operation of the overall system is clear, it 1is
imperative that one consider how each respective programming concept
is taught. Chapter five considers this topic and provides a discussion

of the system's Concept Routines.

e A

concepts such as table searching or input and manipulation of numbers
require quite large programs to implement them. Smaller concepts such
;s Accumulator or Link manipulations can be taught quite simply.

Each Concept Routine is responsible for the design of a particular
segment of the final user program. It therefore must have available
to it all parameters in the program which are relevant to that segment,
There 18 a kernel set of program paraﬁeters which are passed to every

Concept Routine. This set includes the present memory configuration

\
\ (MEM), the program counter (PC), the literal pointer (LIT), the concept
\ sequence (SEQ), and the user's current LEVEL. Other parameters are
\ . available as they are needed in particular Concept Routines, '

There are three distinct phases_in the operation of 2very Concept
Routine. Though these phases vary greatly in size and complexity, it
is important that each be treated as a ceparate entity. The three
portions of every Concept Routine are a generation phase, a teaching

phase, and a remedial phase, Figure 5 indicates the ‘basic flow of

any COnéept Routine,

. 70 l

possibilities. ‘When the system finally decides that the response
supplied by the student is in error, it informs him as to the reason
for this decision and supplies the best program alternative,

If the student's response matches'any of those which thc system
generatedlthen it is accepted by the system as a valid program
instruction. Sinc; this was not the expected result however, several
program parameters may have to be altered to adjust to this coudition,

A trivial example of such a case occurs in the initialization of
a counter. If a program loop is to be executed N times, then either
the value of N or ~N must be stored in meﬁory. If the student chooses
to use N as a,counfer vaiue, he must form its 2's complement before
he deposits it into the counter register.r The system must make note
of the metﬂod he chooses because 1if an;tﬂer counter is required later
in tﬁe program, this same me;hod of initializatiqn must be used,-

Despite the simplicipy of this example, tﬁe principle in operation
is important, Figure 7 gives a representation of the first method of

program verification as used by the system,

- - - Proiram Simulation - . - - -

] Analyze
Student
Program

Enter
Generation
Phase

Enter
Remedial
Phase

Set Program
parameters to
reflect current
conditions

&

- v

Decrement
SEQ

v

71
Figure 7

Diagram of Response An?lysis in Teaching Phase

Generate Correct

Answver

—_—

Accept

Response

i

Increment . Y A
Performance e Match No
Indicator ¢

Any More
Possible -

Answers
?

Yes

.) ‘] Decrement
i) Performance ’

~ -1 Tndicatar —

58

Generatipn Phase

The generation of a program segment means that the system com-~
pletely designs and writes the program for the user. Since each
Routine has this capability, the system's generative facilities are

quite flexible.

The generation phasé is entered only if certain conditions are
present, The reasons for this are basic to the design of MALT.- The
system should obviously refrain from generating the entire soiution
program because the student would derive minimal benefit under these
conditions. Likewise, the student should not have to write every
portion of his program because many of the concepts involved ;ay be
quite trivial to him. The system therefore sets a particular generation
thgeshold value for each Concept Réutine. If the student's current
LEVEL is above this value, the system generates a solution program
segment for him. If his LEVEL falls below the threshold the system
performs ﬁo generative function whatsoever and the student must design
the entire program segment witﬁ only systeh assistance.

The numerical valﬁe of this threshold varies greatly with the
difficulty of the concept 1n§olved. Quite easy topics such as
transferring a number between the Accumulator andrnemory may be
system—generated‘at a LEVEL of 1. Others, such as table sezrching
or iist manipulation, are generatad only at a LEVEL of 2.5. The
result is that as a student progresses throqghrthe material, tobics
wﬁich he has previcusly mastered are performed by the system, He is

responsible only for éoncepts which are commensurate with his current

achievement level. Table 8 provides a sample of some Concept Routines

* Qer

\
$

59

and their corresponding generation threshold. The third column
of the table will be discussed later.

The generation threshold value of man; Concept Routines can be
extended in certain cases. A situation might a;ise in which a student
has reached g‘particular level and has not yet been exposed to certain
concepts which are usually encountered at lower levels. Although these
concepts will probably prove fairly basic to him, he should nonetheless

be given the chance to try them. Therefore, if a student's LEVEL

- places him into the generation phase of any concept which he has

not yet encountered, he is often required to write the program for
this concept himself. The system thereby virtually eliminates the
possibility fhat a student may progress through the entire instructional
sequence and never be exbosed to ce;fain basic programming concepts. '

The generation phase of a Concept Routine does not consist of
specific programs designed by therinstructor.A He provides only
aléorithms which the system can use to design its own programs. This
is because user program parameters often vary an& tﬁe programs which
are_ggnerated must reflect these differences. The system must be able
to desigh a correct program regardless of tﬁe initial .contents of the
Accumulator, fhe location of pointers or counters, etc. As the status
of the user program changes, so too must the generation éhase be abié
to alter its solution progfam to indicate these gﬂanges.

An important consideration in the automatic generation of a user's
program is.that of efficiency. Certainly the course instructor is
capable to providing the system with complex algorithms which would
produce programs that are maximally efficient. However, if these

programs cannot be understood and followed by the average student,

A

60

Table 8.
SAMPLE CONCEPT ROUTINES,
! SHOLD.
JNTERACTION RANGES
) VALUE OF STUDENT'S
FUNCTION AND NAME GENERATION "LEVEL" WITHIN EACH
JHRESHOLD | INTERACTION RANGE
Use of pointers (PTR) 1.5 (o0,.8),(.8,1),(1,1.5)
Use of counters (CTR) 1.5 (0,.8),¢.8,1),(1,1.5)
"Masking" operations (mask) 1.5 X (0,1),(1,1.5)
Textual output (TEXT) 1.7 (0,.5),¢.5,1),(1,1.7)
Manipulation of LINK (oflow) 2.0 - (0,.8),(.8,2)
Loop operations (lend) 2.0 (0,1, (1,2)
Output of numbers (preg) 2.5 (0,2),(2,2.5)
General input/output (read) . = 2.5 (0,1),(1,2.5)

Numerical compaflsons (largé) 2.5 (0,2),(2,2.5)

61 -

their instructional value is certainly lost. The system therefore
must reach a reasonable trade-off between these two characteristics
if it is to provide the student with the most possible benefits.

The present system appéars to be quite effective in this respect.
All programs generated by the system are as concise as can be .expected.,
Still, the programs do not use any highly sophisticated techniques
such as extensive microprogramming, self-modifying programs, or
recursive s;broutines. These methods would only serve to confuse
a beginning student.

During the course of any program generation it may be necessary
to call other ‘Concept Routines to function as sub-concepts. A routine
designed to teach.simple textual output may want to use oné which

' deals only wigh the operation of the printer,; for e#ample. Such
concept interactions are common and cause no problems‘because if the
- highest level concept is being generated by the system, hleariy any
lower level ones would also be generated. These more basic Eoncepts
would usnally‘be easy enough for the student that he wéuld become P
‘q;itg bored if required to érogram them completely,

As each sub-task is generated by the system the resultiﬁg
progr;m is shown to the student. This allows him to monitor the
construction of his prdgram and note its logical flow,

In most Concept Routines, program generation is accomplished fairly
quickly. It often appears to take longer than it actually does,
however, due to the lack of diaiogue. Nevertheless, the current
wait time is about ten seconds, a tolerable interval when one considers
the amount of system activity which occurs during this time.

The program generation facilities of the system have heretofore

62

proven to be successful. Some students tend to become impatient during
generation but their boredom at being required to perform trivial
programming tasks would probably be greater. The only difficulty
encountered to date is that a problem is sometimes generated which is
difficult in nature but can be broken down into a sequence of fairly
basic sub-tasks. The studént may then be faced with a situation in
vhich the entire program is generated by the system even though his
LEVEL is less than the maximum value of 2.5. This occurrence is
obviously undesirable but can be remedied only by severely restricting
" the powers ;f the problem generator. It is therefore accepted as an

unfortunate by-product of the system design,

Teaching Phase

vAll,prograyming instruction which the student receives occurs

during the teaching phase. of ; Concept Routine. This phase is
. entered whenever the student's LEVEL is less than the generation
threshold value. This means that the concept will be difficult enough
so as not to seem triyial to the student. In it, the student designs
his own solution program undef the guidance of the system.

Withiﬁ the teaching phase of any Concept Routine there exists

- »
a variable number, usually two, of degrees of interaction. The
student's LEVELideterm;nes the amount of questioning and dialogue
which the system 1n1tiate§. At the lowest interaction range the
system will guide the student chrough every step in the construction
of his program. His program is required to be very similar to the

system's solution program.

T

64 -
Figure 6.

EXAMPLE OF SYSTEM INTERACTION

AT VARIOUS “LEVELS"

0 < LEVEL < .8

Since we may need a ctr later, we will store the ctr value In
memory and move it into a reglster which we will use as the

actual ctr.

Use M377 to store the ctr value and M376 as the ctr.
You should use "7760" (the 2's complement of "0020") as the ctr value

M377:

1769

First, get the ctr value:
M0O01:

1377

And deposit It into the ctr:
M002:

3376

Use elther "7760" or "0020" as the ctr value.

Use M377 to store the ctr value and M376 as the ctr.

M377: !
0020 -
First, get the ctr value:

M0O01:

1377 -

Now, form It's 2's complement: .

MOO02:

- 1041

And depds!t it Into the ctr:
MO0O03:
3374

1 C LEVEL < 1.5

Use M377 to store the ctr value and M376 as the ctr.
M377:
1760
M0O01:
1377
M002:
3376

65

user and tends to strengthen the possibility that they will occur
again,

The MALT system was designed around the philosophy that program
inefficiencies are to be allowed but always pointed out to the
student. The reason for thé inefficiency of thé particular instruction
involved is to be explained and a better alternative provided. However,
errors which disrupt the logical flow of the program are never to be
allowed. To do so would make the final results totally invalid and
would teach the student virtually nothing about correct programming.
As each logical error in the program is typed by the student, the
system explains why it is inappropriate to the current process. It

also gives the current instruction 2nd usually inserts it into the

program. ’ -
There are certain instances, however, in which the correct

instruction is not ifserted into the program by'the system. Early

. results from the student's use of the system seem to indicate that

the primary causc of programming error involves use of the Accumulator.
Stu&énts tend to disregard the current status of the Accumulator

when formulat:ag their program. The obvious result is that this
register often coﬁtains a humber when it should be cleared or vice
versa. Since this type of error is so important to the final results,
the system requires the student to cor;;ct the program himself. For
example, if a student neglects to issue an "CLA" instruction (CLear
the Accumulator) when one is absolutely necessary, the system requires
him to do so regardless of his current LEVEL, This technique forces

him to focus his attention on the instruction and its use in the

current program. It also prevents a common mistake from being overlooked

-~

66

and developing into an undesirable programming habit.

During the teaching of any large concept it is often necessary,
as it was in the generation phase, to use other smaller sub-concepts.
There is a marked difference in the treatment of these sub-concepts,
however, because of a sub-concept called from the teaghing phase of
a Concept Routine may or may not enter its own generation phase. That
is, even though the sub~concept is obviously more basic than the concept
which called it, it may still be difficult gnough so” that the student

is required'to program it., The system can thereby adapt very closely

——

to the student's needs because even though he may be faced with a

very difficult programming concept, various portions of it can be - |
generated for him by the system. He is free to focus his attention on
the more challenging segﬁénts of his program.

Every response which the student makes during the teaching phase
is ;ltimately reflected in his LEVEL. He is usually penalized a signi-
ficant amount for errors in a particular concept while being rewarded
a lesser amount for correct responses in the same concept. The result
is that the student's LEVEL tends toAconverge quickly to a value which
very nearly reflects his current programming ability.

Whenever an incorrect response is typed by the student, the system
temporarily eiits from the teaching phase of the active Concept Routine.
It enteré the remedial phase in which the student is provided with an
explanation as to tﬁeireason for his error and a possible correct

5
solution. -The system will subsejuently re-enter the teaching phase

to finish guiding the student through his .solution program.

67

Remedial Phase

The final portion of any Concept Routine has the responsibility
of generating remedial statements to indicate to the student the
reason that his program is in error. These remedials usually include

an explanation of the error and a description of the steps necessar}

!
i

to correct {it,

The remedials given by the Systgg are rarely pre;determined by\
the instructor. They are usually simple sentence formats from which
an appropriate response can be constructed. A wide variety of possible
student errors are therefore handied effectively by only a few statement
formats with no loss of remedial ability.

The system usually provides the correct érogram statement in
both machine and assembly 1anguage formats. The conversion from one
format to the other is trivial for the system and shows the student
whether his error was a logical or merely a,s&ntactic one, It also
helps him to develop the habit of formulating ﬁis solution program first
in assembly-ianguage<hh%ch tends torminimize purely s:ntactic errors.

Remedial statements of more than one sentence are sometimes gen-
eratéd semi-randomly according to a particular function. The same
user mistake will often result in the generation of two different
remediais by the system. The student may therefore possibly receive
either a basic'or a complete explanation as to the cause of his error,
The functicn which determines this is heavily weighted so that c;;plete
remedials are more likely to occur if the student's LEVEL is relacively
low than if it is high. This helps-to insure not only that errors

are fully explained and understood by the student, but also that rem~

edials are consistent with, his present ability. ,

»

68

The three phases of a Concept Routine are designed to maximize the
flexibilitf of the system. Each phase has a particular function which
varies somewhat according to the student's past performance. The
inclusion of three such phases into every Concept Routine allows the
system to perform effectively for all students regardless o(their
abilities. Appendix B illustrates the use of the teaching and
remedial phases during the programming of a simple concept.

The system also has the ability to simulate e#ecution of the
user's program if it feels this process will be beneficial to the

student, Chapter 6 discusses the method by which this is accomplished.

A

Vi. PROGRAM VERIFICATION AND SIMULATION
There are two important techniques used by the QALT system to
judge the correctness of a student's program. The mo;t com;ﬁn met hod
is to analyze in detail each segment of the prog;am as it is typéd in
to determine if it performs the required functions. This is done109
an instruction-by-instruction basis so that there is immediate feed~
back to the student. 1In ;herrare cases where this method 1is not
feasible, the program can be simulated and the results of this simu-

lation analyied by the system. This method involves much system
i

activity and will be considered in detail. In either case, the

system has virtuallyAtotal ability to recognize logical errors in the

user's program.

Immediate Program Verification

The first technique of program verification requires that the
system be thoroughly'familiar with virtually all aspects of the current
program. Only if it is aware of the status of all program parameters
can it effectivelé judge the merits of any program segment which the
student might design. It also must be able to determine not only if
the response is the best possible one, but also if there exists
other alternative responses which also are acceptable.

As the student fofmulates each response, the system also gen-
erates what it considers to be an appropiiate answer. If the two do
not match,the system must determine if other responses are possible.

If so, the student's answer is compared with all such reasonable

69

72

many possible solutions, each as valid as the next, that to force the
student to use any particular one would deprive him of much of his
programming freedom. It would also clearly be counter-productive

and contradictory tc the original aims of this reseatch.

It was decided, fherefore, that program execution used sparingly
vas the best alternative. This mgthod sharply decreases the amount
of correcting ability in the system but provides the student with
greater freedom in his_pr;gram construction. The trade-off is very
worthwhile 1n4the cases in whiclh ;t is ﬁsed because t; pro#ide the
system with full program monitoring abilities would be prohibitive
in terms of time and disk stor;ge. Since thé system is co;cernéd
only witl the final ;esults‘of the program and not each 1ntermediate
step, éhe student is free t6 design h1§ progqgm using vi;tu;lly any
method he feels is éffecuy;z. | ;

The limited execution of a user's program provides other
ad&antages also; Most st;dents léarn basic programming,by turﬁing in
a set of cards at téeir compdter cgnte? and returning later for the -
6utp§;, The intermediate results and éctio;s of the progfgm are
unknown to thenm. Byiac;uall§ oﬂservingrtheitrprogram in execution
‘7they gain insight into both its logical sfructpre and thernafure of
any errors wﬁich might be freseng. There are only 5 concepts for
vhich simulation is used. These include the foliow:lﬁg: 7

1. Manipulation of the Link registef V

2, Comparisﬁn of register contents

3. Movement of numbers within memory

4, Decisions based upon the Accumulator sign bit

5. Decisions based upon the absolute maghitude of the
Accumulator

73

Despite the apparer* simularities between the MALT syétem and
previous ones in this réspect, there is a fundamental difference.

In MALT, the student is not expected to judge the correctness of his
own program. The system analyzes the program both before and after
gimulation in order to isolate any possible errors. This procedure
. guarantees that the final program will be totally correct in its
logical structure.’ ;

The actual operation of program verification is very similar
tovthe’procéss a étudent’follows when he de-bugs his brogram on a
step-by-step basis. The primary difference is that the system makes
evaluaétve decisionsvconcerningithe program while this reéponsibillty
is usually left up to the programmer. That portion of the system which
makeé these decisipns is called the Program Verifier.

Before ;ny simulation is attempted, the current status of the
user's program must be sayed. YThis }s important because it eliminates -
the possibility fha% the execution of a new program seémentrmay modif} .
or destroy-other portions éf the program. Next, tﬁe operation which
~ the program seémeanis supposed to perform 15 determined by a numerical
code which is passed to the Verifier. iach such code is unique and
determines the prop:r state of the machine Befofé and after execution, .

After the intent of the prégram segment is establiéhed; all condi-
tions of the machine which might p&ssibly;affegt final prograﬁ results
Vare determined. This is absolutely eséential because the user's
program must be ;estéd under ali possible machine states. To do
otherwise would make the syst(n's judgements pure guess—work.

These initial conditions set by the system are determined by the

characteristics of the program segment itself. For example, if the

i

%

program is intended to perform a particular operation depending upon
the statvs of the Link register, then only two initial states are
necessary. The program is tested with a zero Link and again 1ater
with a non-zero one. Since the flow of the program depends solely on
these two conditions, to test it under other initial states would be
superfluous.

The duties of the Verifier are temporarily suspended upon deter- .
mining each initial machine condition. The SEDCOM Simulator is then
called in order to execute the program. This simulation is a1so sub-A
ject to certain constraints and will be discussed below.

When the Verifier regains control of “the system, several deter-
minations must be made. It‘is quite possible that program execution
was not terminated normally. Abnormal conditions which would cause

sinulation to cease are‘such‘thingS’as infinite loops, undefined 7

instructions, or incorrect program branches. These conditions must ’) -

be corrected immediately before any other analysis of the program is

initiated. Therefore, the student 1is given the opportunity to correct

" his program, the current set of initial conditions are re-established . %
-and simulation is attempted again. a

If normal program termination occurred, the system must proceed

-to analyze the results to determine their validity. This is accomplished

by implementing the concepts derived in Manna's research [7]. For
each initial machine state, $(x), the user's program must perform a 7 !
particular function, z = f(;). If this function is performed correctly,

the corresponding output predicate, y(x,z) will be true. If t* .s is

the case, the program is judged to be correct for the given initial

states.

75

The determination of the appropriate output predicate is not
trivial. Many terminal conditions must be checked such as the conténts
of any memory register, the status of the Accumulator and Link and the
location where the program halted execution. Each of these parameters
must also be analyzed in relation to other such parameters. For
example, it may nof be enough that a given register holas a particular
value. This value might have to be compared in some way with the
contents of another register ;nvolved in the program. A flow chart
111ustrat1né opgfation_of the Program Verifier is given in Figure 8.

If any particular terminal condition indicates that the userb
'Aprogramrdid not perfoém its function correctly,. the syétem attempés
remedial action. Sinéé it is aware of the exact rgsu%fs which should
’haveAbeen obtaiﬁed, it can provide a concise désct@ptioﬁ of thé'error{
It Eannot howeyét, by its veéy nafuré, isolate the locaiion'of the
error in the user's pfogram. This determination is left up to the _
student. 'Howevér, the probiem has #een greatly simélified due to tﬂe
‘ ,system'; diégnosticg and the user's ability to observe his program in

exécution. An example,of actual Prograﬁ Vérification operation is

giGen in Figure 9. The samble program finds the abéolutg value of the ACC,

The Péogram Verifier will not allow any program to be'judged cor~

rect if it does not meet stringé;t standards. This implies that each
 program must be tested and modified until it is acceptable to the

system. The time involved in such a process is usually small but if

a student continues to hav: difficulty it may become quite large. For

this reason, the student may press the ATTN button at any time to halt

prégram simulation. Besides the usual alte;ﬁatives given to him, he

is offered a special option merely to return to the latest concept

T— o e

76
Figure 8

Flow Chart of Program Verifier

‘ SAVE
- «Current
Progranm

Determine
initial states,

S
n

i1

1«1+l

Set
Machine
Conditions]

to S1

Successful
Simulation ?

Restore

Program

Save
Revised
Program

B

77
Figure 9,

OPERATION OF PROGRAM VERLFIER

Type in your program for this sub-task and end It with *0K",
001 :
_7500
002 :
7402

003 :

_7040

00%4 :

_7402

005 :

0K

T can't tell If this Is correct. Should 1 execute it?
_yes

Watch as your program Is executed: -
First, let the (ACC) be negative. ’

001 : 7500 .) ~
003 : 7040 '
004 ¢ 7402

Your program has halted because of a "7402" command.

Is this what It was supposed to do?

_yes

Your program appears to have an error In it!

if the ACC is negatlve, you are not forming the 2's comp. of it,

‘Do you need to change your entire program segment?

_ho
How many reglisters do you nead to change?
number

_2
Type in the address, hit carrlage return, then the Instruction.
004 .

7001

005

_74502
FIrst, Tet the (ACC) be negatlive.

Now, let the (ACC) be positlive.
001 7500

002 : 7402 .

Your program has halted because of a "7402" command.

Is this what It was supposed to do?

.yes - S
Congratulations!!i | think your program segment works.

78

entered instead of terminating system operation entirely,

The ultimate acceptance of the program by the system is based
upon its correct simulation under each initial condition. Once this
is done, the criginal or corrected copy of the program is restored.
This 1is necessary again because even succressful program operation may
have altered the contents of certain registers which should remain

invariant.

SEDCOM Simulator

The simulation process in MALT is made far more complex than it
need be simply due to the structure of the CPS system. The Simulator
would be aimost a trivial addition if CPS were designed similarly to
the structure of a small coméuter. This is not the case Ho;ever, SO
simple program interpretas}on becoﬁes an involved affair. All
maniputations, including arithmetic operationms, mst be perrormed
on character strings representing octal digits. The result is fhat <
muéh system programming effort is expended on enabling the system to \ -
perform relatively trivial tasks.

~

That portion of the system which actually performs the simulation
is fairly stra?ghtforwatd,’though somewhat bulky. Sinpe the CPS
language is the vehicle for this instructional system, the SEDCOM
Simulator must obviously funcsion in an interpretive mode. The .
Verifier provides it only with the s;arging and correct ending location
of the program segment written by the student.
The Simulator is designed to operate much the same as the actual

PDP~-8 computer, Each hardware reeister in the PD™-8 haé a software

counterpart in the Simulator. The primary registers used by the

Simulator are a Memory Buffer‘Register (MBR), Memory Address Register

79

(MAR), Defer Register (D), Instruction Register (IR), and Current
Instruction Counter (CIC). Each of the registers is stored as a
fixed-length character string. The MAR and MBR are used to
contain, respectively, the address of anyv memory registers which ~
is referenced and the contents of that register. The D register
contains the ‘status of the address mode bit which indicates either
direct or indirect addressing. The CIC indicates the next instruction
in the program to be executed. Finally, the Ipacontains the operation
code of the current instruction.

There are two types of iﬁstructions with which the Simulator

must deal. These are memory Reference Instructions (MRI) and Register
— R

e

Reference Instructjons (FRI)., The first type involves operations on
memory ;egisters while the latter deals only with manipulation and
testing of the Accumulator and Li;k contents. These groups of
instructions are handled in two completely different ways by the
" system. - 7
To simulate execution of an MRI, several steps must be performed
in the proper order. Tirst, the contents of the CIC are loaded into
.the MAR and the contents of the register addressed by the MAR is put
into the MBR. Next, the operation code of the instruction is
extracted and placed in the IR. The address mode bit is loaded intov
" the D register. The address field of the instruction can then be
" “loaded into the MAR and the contents of the memory register referenced
,/ by this addresé is placed into the MBR. If indirect addressing is

indicated, this ié§t=process is repeated using the MBR contents as an

address field to get the proper number into the MBR. The instruction

is then simulated using the MBR contents as the operand and the- .

80

operation code to indicate the correct operation. 1In general, the
CIC is incremented by one after an MRI and sequential simulation
continues. There are instances, (a‘JMP or ISZ instruction), where
the contents of the CIC may be considerably altered after the
simulation of a particular instruction.

Register Reference Instructions cannot be simulated using the
same meihods as the MRI. Each bit of these instructions correspﬁnds
to a particular operation.to be performed. If multiple bits are set
to "1", then multiple operations are necessary on the Accumulator

i,?or Link contents. Therefore, each b}f is'analyzed in tutn and the
corresponding operation is either performed or ignored depending on

the contents of the bit. .
. L ———

The process of program simulation continues until the end of the
; program segment is reached. This indicafes normal program termination

and control is then returned to the Verificr in order to test the
results of the‘simul an.

As mentioned abOV¢,.£heré are several errors that may exist
in a program which are'independeht of the purpose of that program.
These mistakes mustibe corrected immediately even before any other
determination of program correctness is attempted. The Simulator
therefore fﬂnctions not merely as a vehic;e for program execution, it
also has the capacity to make limited judgemé%ts about the basic
structure of the user's program. These determinations are strictly
-syntactig yowchr, and are not to be confused with the subﬁective,
semantic corrections which the Program Verifier makes.

One of the simplest checks which the Simulator makes is that of

locating undefined instructions. The student is shown each such

-

81 =
instruction and immediately required to correct it, A similar
situtation occurs when an instruction is found in a program in
which it clearly does not belong. Since only a limited number of
program segments are candidates for simulation, there are some
instructions which would be inccrrect if included in these segments.
For example, no program segment involving input/output programming
is ever simulated. Therefore, any I/0 instruction which is found by
the Simulator is definitely out of place and must be changed.

The Simulator also has a few more subtle monitoring abilities.
All user programs are contained to operéte within the range of the
curfent program segment. Any attempt to branch out of this afea
or to make unauthorized register references will be suppressed by
the Simulator. "Also, the program jis constantly monitored for the
existence of infinite loops. If such a loop appears, t> exist,
simulation ceases and corrective measures are taken by the student.
Appendix C 1llystr;tes a case in which an unauthorized branch was
made in the student's program,

Aé any error is uncovered by either the Simulator or the Verifier,
the student is asked to make the necessary revisiong in his program,
Although this process often ;equires a redesign of éhe entire segment,"
it sometimes calls for only the corfection of a few instructions, To
avoid re~typing of those parts of the p:ogram which have already been
accepted, the gystem allows the student to correct only a few
instructions 1f he so desires.

The verification and simulé;ion propeféies of MALT were introduced

as a method of enhancing the flexibility of the system. Students tend‘

to tire of constant dialogue and become bored unless the system

82

progresses them through the material vith reasonable swiftness. By
observing his p;ogram in action, the student is spared long waits and
those Concept Routines in which it is used yet causes only a minimum
loss of program correction ability. These bas{c reasons, along with
the fact that student reation to'this facility has been very favorable,
seem to justify its inclusion in the HALf ;ystem.

It should a1ow be clear exactly how the system attempts to teach
machihe-language programming. The final matter to consider 1is the
way in which student performance records are maintained. Chapter 7

provides a discussion of the CPS file system and how these files

are stored and evalnated by the system.

VII. STUDENT RECORDS

In order for the system to adapt its presentation to each student,
records of all student performance must be maintained. These records
are kept in three CPS files stored on a random access disk for
quick retrieval.

CPS has facilities for records to be stored in disk areas other
than those ;eserved for executable programs. This allows larger CPS’
programs to be used because the programmer need not concern himself
with reserving storage for a large number of records. These files
can be retrieved and updated selectively so that a minimum amount of
access time is consumed. The current time spent in file retrieval
" 1s only about four or five seconds. This delay is completely toler-
7ab1e especially because it only occuré after the student has finished
his solution program. |

MALT maintainsAStudent records in three separate CPS files, Twp'
of these files are ;eserved for records of’each individual student
and the third is used as a cumulative class performance 1nd1catof.

At the béginﬁing of any semester, the instructor can reset all of.
these files to contain null elements. This can be accomplished
completely by the system using facilities in the Instructor Mode.

‘ As each student uses the system for the first time, a fresh file
record is established for him. The contents of the file are 1n1t1§iized

to reflect that the student is a beginnfﬁg user. After each system

use, the student's records are updated to indicate his latest

3 -~ 4

achievement level.

83

84

The cumulative record of each student is kept in the file
SNAMES. A diagram of the structure o.” this file is given in Figure
10. This is a sequential file and‘décuﬁies 352 bytes of disk storage.
It contains sixteen elements, each one being a character string of
length twenty-two.

The first eight characters in a SNAMES file entry is the student's
name. Cglumns nine and ten indicate the user's LEVEL value after his
last use of the system. fhis number is always rounded off to the
nearest tenth after the student finishes a session at the terminal.
The next two columns reflect the number of problems which the student
has';olved. This ~nables the instructor to judge the relative progress
cf each ctudent because his c;n compare the change in LEVEL (from the
initial value of .3) to the number of problems needed to bring about
this change. .) .

Columns thirteen tﬁrough iifteen of the SNAMES file show the
total time in minutes each.student spent usiné the sistem.- Certéip
deductions concegniné responseAtime canvbe maae fr;m this parameter
although each such co;clusion would be highly sPecq}ative. The
next four columns 1nd1c#te the total number of responses which the
student made. .Columns twenty through twenti-xwp show how many of
thesé responses were ;ncorréEt. These two pataméters-cén he used
to determine an actual numerical grade to-adequately reflect the
student's complete performance. B

There is a fundamental reason why the system maintains records

=

of incorrect student responses as opposed to correct ones, In many

subjects taugnt through the use of CAI, every response can eisily

be classified as being either right or wrong. In computer programming

-— L

0D

Flgure 10,

STUPENT FILE SHANES

SAPLE ENTRLES

—
COLLLNS 1-8 c-1n | 13-12 13-15 16-19 20=02
le
1 st T
£1 STUDCHT HARE | LEVEL USES TINE nssporsesH FRrnrg
£2 STUDEMT BAE 1.6 | o non7 0oa0 01¢
£3 STUDENT DAE n.s 02 { o013, 0017 noL
A4 STUDENT LAl 2.1 15 ©120 0110 014
Ay ‘ 7 -
{

216 STUDENT NANE 1.1 05 022 no4o 003

i
.

86

however, this is not tiie case. A particular sequence of machine-
language instructions which the student types in might not be eractly
the response expected by the system. It may be, however, perfectly
acceptable in that it performs the correct'function with only a small
" loss of program efficiency. Such a situation should be noted to the
student but the program segment should not be considered as being
incorrect. Only sequences which obviously will not bring out the
desired results sn;ﬁid be treated as %ncorrect. The system maintains
records, therefore, only of student responses which clearly were
inappropriate to the process involved.

The SNAMES file is 1n1tialized only before.the start of a
semester. As each new student enters the system a record is allocated
to him and his name entered 1nto 1t. A}l other vslues in the file
are set to zero, except his LEVEL which is 1n1t1a1dzed to 0.3. This -
file is updated only upon completion of an’ entire session at the
’ terminal. After this occurs, the system logs out the terminal to
avoid a student gaining unagthorized access to his file.

AThe,complete history of eacn student}s use of the system is
provided b& the PROBS file, shown -in figure 11, It is regdnnal in
-oréanizatiou and occupies tgoAdisk tracks. _Because of its organization
and size3 only one. student's record is aecessed or npdated at a tdme.

There 1is currently‘space for the records of twenty problems for
€ach student. fhe resnlts of each nse of the system by‘the student
is represented as a se&en-element arraf. Since the PROBS file can

be reset by the insttuctor at any time, there are no difficulties

concerning space limitations.

_ Flgur8e7 11,

" STUDENT FILE prong
16_ENTDIES

SAIPLE ENTRY FPD THE jth STUDENT

ENTRY VALL-
1 1st PROLLE! PRINITIVE HUNGER
/
2 2nd PRORLEN PRINITIVE NUNBEPR
: 3 3rd PROSLE!N PRISITIVE NULBER
- PROBLE
#1
: A LEVEL 9% THIS PROSLE!
5 TIIE (11 INUTES)
6 " RESPONSES
7. EPNORS)
A
. '.‘t
1 8
2 q
PROBLEN 3 -, 2 ' -
20 : : . A _
= j &,
b 2.1
5 17

Y

of cach respective primitive which were used in the probiem. This

¢

88

The seven elements of each entry are designed to provide all the
information which the system requires in evaluating student performance

on a particular problem. The first three entries indicate the number

enables system alterations to be made if problem generation is not
sufficiéntly random. The fourth element is the student’s final LEVEL
after solving this problem. Entries five through seven are equivalent
to their counterparts in the SNAMES file. They represent, respectively,
the time spent on this problem, the number of respon:;es made, and the
number of incorrect resﬁ&nseé. These entries enable the instructor

to isolate certain types of problems which are proving difficult to

F— .

a particular student.

. The third system file, ﬁATIOS, focuses on ge@eral class performance,
not individual achievement. This fiie is also direct-access regional

but requires only one track. Tt consists of a 2 x 13 numerical array

with the second subscript in the rangei(O;IZ).

Each of the twelve principal -elements (the entry with the '0°
subscript™1s a éummy record) represents the class perforhaﬁge on a

particular programming concept. Each such element is termed a

‘Concept Ratio, (see Table 9). These concepts are more general than

those of the Concept Routines because a broad achievement indicator

which has somé diagnostic validity vas desired. Several related

‘Concept Routines may be combined to form a larger Concept Ratio. For

instance, the second Concept.Ratio is entitled "Textual Output"

- and represents a host of programming operations. -By including a!l

‘these minor 6§erat16ns into one large class, the‘insttdctor is able

to achieve a bettér view of general class performance and to gear his

89

. Table 9.
g
LlST‘OF CONCEPT RATIOS ‘ .
- CONCEPT RATIO SUBSCRIPT OF ‘RATIOS FILE
REG-TO-REG MOVEMENTS - ; 1 | §
TEXTUAL OUTPUT _ - 2 |
READ/WRITE OPERATIONS » 3 N
INPUT OF NUMBERS 4
TABLE SEARCHING OPERATIONS : . 5
| ACLUMULATOR MANIPULATIONS . 6
, lNlTlALlZATlONigE,POINTERS - 7
INITIALIZATION OF COUNTERS - . 8
- . OUTPUT OF REGISTER CONTENTS | 9
| SORTING Tséﬁulques’ ‘ a . 10
g . _OPERATIONS iNVOLv:NG PROGRAM LéOPS’ , o1

MISCELLANEOUS REGISTER OPERATIONS . A . 12

L

90

.

. classroom presentation to the student's needs.

. The technique of maintaining ‘records only of broad areas of
prograi?i&g ;as chosen for another important reason. If quite
detailed and specific concepts were utilizgd, small deficiencies in
the system could produce‘érofound effects. If a pafficular question
or stateﬁent happened to bé badly worded, it might cause virtually
every student to respond incorrectly. The corresponding Concept
Ratio score would be extremely poor despite the fact that the system
was basically at fault. However, by enlarging the scope of each
Concept katio to include many reiated, smaller operatiions, the effects
of such an occurrence-arg'completely minimized,

Each Concept Ratio has two components which determine its
vvaiue. The first is the number of questions asked on a programming
concept and’the second 1s a total count of incorrect responsés. These
are stored in the Ratios ;;ray with tée first subscripts 1 and 2

respectively. The value of the Concept Ratio for the jth programming

-concept 1s:

o - ~+|Ratdios (2,1) ,
Concept Ratio ‘ 100 [Ratios 1,3 100

The result is a perceﬁtage value indicating the extent to which the

class mastered the cor}esponding programming concept.

The student records were implemented as a means of providing
structure to the progression of a student through the system, They

appear to per:orm this functioniweil although it is basically only

a clerical one. N

This chapter concludes the discussion of the operation of MALT.

-

———

